Non-homogenous KdV and coupled sub-ballistic fractional PDEs
نویسندگان
چکیده
منابع مشابه
Solution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملExact Traveling Wave Solutions for Coupled Nonlinear Fractional pdes
In this paper, the ( / ) G G -expansion method is extended to solve fractional differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into ordinary differential equations of integer order. For illustrating the validity of this method, we apply it to fi...
متن کاملApproximate Analytic Solutions of Time-Fractional Hirota-Satsuma Coupled KdV Equation and Coupled MKdV Equation
and Applied Analysis 3 Theorem 5. If u(x, t) = f(x)g(t), function f(x) = xh(x), where λ > −1 and h(x) has the generalized Taylor series expansion h(x) = ∑∞ n=0 a n (x − x 0 ) αn, (i) β < λ + 1 and α arbitrary, or (ii) β ≥ λ+1, α arbitrary, and a n = 0 for n = 0, 1, . . . , m− 1, wherem − 1 < β ≤ m, then the generalized differential transform (8) becomes U α,β (k, h) = 1 Γ (αk + 1) Γ (βh + 1) [D...
متن کاملINTEGRABILITY OF A NON-AUTONOMOUS COUPLED KdV SYSTEM
For a better understanding of complicated physical phenomena scientists have experienced that it is necessary to introduce mathematical models whose time evolutions might show some features very similar to those of the original phenomena. These models are usually systems of nonlinear differential equations. These equations can be solved by the use of approximation techniques. But the range of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Trends in Mathematical Science
سال: 2017
ISSN: 2147-5520
DOI: 10.20852/ntmsci.2017.189